ConspiracyInfoTV2
Starfire Tor is among the world's most unusual people, because she could be a time traveler, or connected in some way that not even she understands to the future. Listen as she and her friend and co-researcher Brandon Scott tell some of the strangest and best documented stories of apparent time travel ever told. Then Linda Moulton Howe reports on strange cat deaths.
Time travel is the concept of moving between different points in time in a manner analogous to moving between different points in space.
Time travel could hypothetically involve moving backward in time to a moment earlier than the starting point, or forward to the future of that point without the need for the traveler to experience the intervening period (at least not at the normal rate). Any technological device -- whether fictional, hypothetical or actual -- that would be used to achieve time travel is commonly known as a time machine.
Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime, or specific types of motion in space, might allow time travel into the past and future if these geometries or motions are possible. In technical papers, physicists generally avoid the commonplace language of "moving" or "traveling" through time ("movement" normally refers only to a change in spatial position as the time coordinate is varied), and instead discuss the possibility of closed timelike curves, which are worldlines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves (such as Gödel spacetime), but the physical plausibility of these solutions is uncertain.
Relativity predicts that if one were to move away from the Earth at relativistic velocities and return, more time would have passed on Earth than for the traveler, so in this sense it is accepted that relativity allows "travel into the future" (according to relativity there is no single objective answer to how much time has really passed between the departure and the return, but there is an objective answer to how much proper time has been experienced by both the Earth and the traveler, i.e., how much each has aged; see twin paradox). On the other hand, many in the scientific community believe that backwards time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality. The classic example of a problem involving causality is the "grandfather paradox": what if one were to go back in time and kill one's own grandfather before one's father was conceived? But some scientists believe that paradoxes can be avoided, by appealing either to the Novikov self-consistency principle or to the notion of branching parallel universes.
Starfire Tor is among the world's most unusual people, because she could be a time traveler, or connected in some way that not even she understands to the future. Listen as she and her friend and co-researcher Brandon Scott tell some of the strangest and best documented stories of apparent time travel ever told. Then Linda Moulton Howe reports on strange cat deaths.
Time travel is the concept of moving between different points in time in a manner analogous to moving between different points in space.
Time travel could hypothetically involve moving backward in time to a moment earlier than the starting point, or forward to the future of that point without the need for the traveler to experience the intervening period (at least not at the normal rate). Any technological device -- whether fictional, hypothetical or actual -- that would be used to achieve time travel is commonly known as a time machine.
Some theories, most notably special and general relativity, suggest that suitable geometries of spacetime, or specific types of motion in space, might allow time travel into the past and future if these geometries or motions are possible. In technical papers, physicists generally avoid the commonplace language of "moving" or "traveling" through time ("movement" normally refers only to a change in spatial position as the time coordinate is varied), and instead discuss the possibility of closed timelike curves, which are worldlines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves (such as Gödel spacetime), but the physical plausibility of these solutions is uncertain.
Relativity predicts that if one were to move away from the Earth at relativistic velocities and return, more time would have passed on Earth than for the traveler, so in this sense it is accepted that relativity allows "travel into the future" (according to relativity there is no single objective answer to how much time has really passed between the departure and the return, but there is an objective answer to how much proper time has been experienced by both the Earth and the traveler, i.e., how much each has aged; see twin paradox). On the other hand, many in the scientific community believe that backwards time travel is highly unlikely. Any theory that would allow time travel would introduce potential problems of causality. The classic example of a problem involving causality is the "grandfather paradox": what if one were to go back in time and kill one's own grandfather before one's father was conceived? But some scientists believe that paradoxes can be avoided, by appealing either to the Novikov self-consistency principle or to the notion of branching parallel universes.